Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of Par3 promotes prostatic tumorigenesis by enhancing cell growth and changing cell division modes

Abstract

Although cell polarity plays an important role in epithelial tumorigenesis, the consequence of polarity protein loss in prostatic tumorigenesis and the underlying mechanisms remain unclear. Using conditional knockout mouse models, we found in the current study that loss of polarity protein Par3 increases prostatic epithelial cell growth, elevates symmetrical cell divisions in basal cells, and randomizes spindle orientation in luminal cells, causing the development of high-grade prostatic intraepithelial neoplasia (PIN). Mechanistically, loss of Par3 dissociates the Par3/merlin/Lats1 complex, consequently inhibiting phosphorylation of Lats1 to attenuate the Hippo pathway. Furthermore, attenuated Hippo pathway enhances nuclear translocation of Yes-associated protein (YAP), which promotes cell proliferation and symmetrical cell divisions through transcriptional activation of Ki-67 and Sox2. In addition, Lats1 dephosphorylation impairs its interaction with G protein signaling modulator 2 (GPSM2, which is also known as LGN) that causes randomization of spindle orientation in luminal cells. Interestingly, co-deletion of Par3 and Lats1 for complete blockade of the Hippo pathway in mice results in prostate tumor initiation, whereas co-deletion of Par3 and YAP for disrupting YAP nuclear translocation reverses the phenotypes to a relatively normal state. Therefore, our findings highlight combination of Par3 loss and blockade of the Hippo pathway as a novel mechanism for prostatic tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Martin-Belmonte F, Perez-Moreno M. Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer. 2011;12:23–38.

    Article  Google Scholar 

  2. Vasioukhin V, Bauer C, Yin M, Fuchs E. Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell. 2000;100:209–19.

    Article  CAS  Google Scholar 

  3. Iden S, van Riel WE, Schäfer R, Song JY, Hirose T, Ohno S, et al. Tumor type-dependent function of the Par3 polarity protein in skin tumorigenesis. Cancer Cell. 2012;22:389–403.

    Article  CAS  Google Scholar 

  4. McCaffrey LM, Montalbano J, Mihai C, Macara IG. Loss of the Par3 polarity protein promotes breast tumorigenesis and metastasis. Cancer Cell. 2012;22:601–14.

    Article  CAS  Google Scholar 

  5. Goldstein AS, Lawson DA, Cheng D, Sun W, Garraway IP, Witte ON. Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc Natl Acad Sci USA. 2008;105:20882–7.

    Article  CAS  Google Scholar 

  6. Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV, et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature. 2009;461:495–500.

    Article  CAS  Google Scholar 

  7. Wang J, Zhu HH, Chu M, Liu YY, Zhang CX, Liu G, et al. Symmetrical and asymmetrical division analysis provides evidence for a hierarchy of prostate epithelial cell lineages. Nat Commun. 2014;5:4758.

    Article  CAS  Google Scholar 

  8. Choi N, Zhang B, Zhang L, Ittmann M, Xin L. Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell. 2012;21:253–65.

    Article  CAS  Google Scholar 

  9. von Stein W, Ramrath A, Grimm A, Müller-Borg M, Wodarz A. Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development. 2005;132:1675–86.

    Article  Google Scholar 

  10. Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B, et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell. 2009;138:1083–95.

    Article  CAS  Google Scholar 

  11. Goulas S, Conder R, Knoblich JA. The Par complex and integrins direct asymmetric cell division in adult intestinal stem cells. Cell Stem Cell. 2012;11:529–40.

    Article  CAS  Google Scholar 

  12. Williams SE, Ratliff LA, Postiglione MP, Knoblich JA, Fuchs E. Par3-mInsc and Galphai3 cooperate to promote oriented epidermal cell divisions through LGN. Nat Cell Biol. 2014;16:758–69.

    Article  CAS  Google Scholar 

  13. Dikovskaya D, Newton IP, Näthke IS. The adenomatous polyposis coli protein is required for the formation of robust spindles formed in CSF xenopus extracts. Mol Biol Cell. 2004;15:2978–91.

    Article  CAS  Google Scholar 

  14. Thoma CR, Toso A, Gutbrodt KL, Reggi SP, Frew IJ, Schraml P, et al. VHL loss causes spindle misorientation and chromosome instability. Nat Cell Biol. 2009;11:994–1001.

    Article  CAS  Google Scholar 

  15. Yu FX, Guan KL. The Hippo pathway: regulators and regulations. Genes Dev. 2013;27:355–71.

    Article  CAS  Google Scholar 

  16. Keder A, Rives-Quinto N, Aerne BL, Franco M, Tapon N, Carmena A. The Hippo pathway core cassette regulates asymmetric cell division. Curr Biol. 2015;25:2739–50.

    Article  CAS  Google Scholar 

  17. Zhou PJ, Xue W, Peng J, Wang Y, Wei L, Yang Z, et al. Elevated expression of Par3 promotes prostate cancer metastasis by forming a Par3/aPKC/KIBRA complex and inactivating the hippo pathway. J Exp Clin Cancer Res. 2017;36:139.

    Article  Google Scholar 

  18. Abate-Shen C, Banach-Petrosky WA, Sun X, Economides KD, Desai N, Gregg JP, et al. Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Res. 2003;63:3886–90.

    CAS  PubMed  Google Scholar 

  19. Ittmann M, Huang J, Radaelli E, Martin P, Signoretti S, Sullivan R, et al. Animal models of human prostate cancer: the Consensus Report of the New York Meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. Cancer Res. 2013;73:2718–36.

    Article  CAS  Google Scholar 

  20. Lygerou Z, Nurse P. Cell cycle. License withheld--geminin blocks DNA replication. Science. 2000;290:2271–3.

    CAS  PubMed  Google Scholar 

  21. Xie Y, Skytting B, Nilsson G, Grimer RJ, Mangham CD, Fisher C, et al. The SYT-SSX1 fusion type of synovial sarcoma is associated with increased expression of cyclin A and D1. A link between t(X;18)(p11.2; q11.2) and the cell cycle machinery. Oncogene. 2002;21:5791–6.

    Article  CAS  Google Scholar 

  22. Lee Y, Dominy JE, Choi YJ, Jurczak M, Tolliday N, Camporez JP, et al. Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression. Nature. 2014;510:547–51.

    Article  CAS  Google Scholar 

  23. Chang YL, Zhou PJ, Wei L, Li W, Ji Z, Fang YX, et al. MicroRNA-7 inhibits the stemness of prostate cancer stem-like cells and tumorigenesis by repressing KLF4/PI3K/Akt/p21 pathway. Oncotarget. 2015;6:24017–31.

    PubMed  PubMed Central  Google Scholar 

  24. Yin F, Yu J, Zheng Y, Chen Q, Zhang N, Pan D. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell. 2013;154:1342–55.

    Article  CAS  Google Scholar 

  25. Gladden AB, Hebert AM, Schneeberger EE, McClatchey AI. The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev Cell. 2010;19:727–39.

    Article  CAS  Google Scholar 

  26. Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163:811–28.

    Article  CAS  Google Scholar 

  27. Messeguer X, Escudero R, Farré D, Núñez O, Martínez J, Albà MM. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002;18:333–4.

    Article  CAS  Google Scholar 

  28. Zhao B, Ye X, Yu J, Li L, Li W, Li S, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008;22:1962–71.

    Article  CAS  Google Scholar 

  29. Carminati M, Gallini S, Pirovano L, Alfieri A, Bisi S, Mapelli M. Concomitant binding of Afadin to LGN and F-actin directs planar spindle orientation. Nat Struct Mol Biol. 2016;23:155–63.

    Article  CAS  Google Scholar 

  30. Lv XB, Liu CY, Wang Z, Sun YP, Xiong Y, Lei QY, et al. PARD3 induces TAZ activation and cell growth by promoting LATS1 and PP1 interaction. EMBO Rep. 2015;16:975–85.

    Article  CAS  Google Scholar 

  31. Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 2012;150:780–91.

    Article  CAS  Google Scholar 

  32. Bultje RS, Castaneda DR, Jan LY, Jan YN, Kriegstein AR, Shi SH. Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron. 2009;63:189–202.

    Article  CAS  Google Scholar 

  33. Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M, et al. Sox2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature. 2014;511:246–50.

    Article  CAS  Google Scholar 

  34. Surzenko N, Crowl T, Bachleda A, Langer L, Pevny L. Sox2 maintains the quiescent progenitor cell state of postnatal retinal Muller glia. Development. 2013;140:1445–56.

    Article  CAS  Google Scholar 

  35. Basu-Roy U, Bayin NS, Rattanakorn K, Han E, Placantonakis DG, Mansukhani A, et al. Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells. Nat Commun. 2015;6:6411.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by funds from the Ministry of Science and Technology of the People’s Republic of China (2017YFA0102900 to W-QG, 2016YFA0502500 to LZ), National Natural Science Foundation of China (81672543 to Y-XF, 81630073 and 81372189 to W-QG), Science and Technology Commission of Shanghai Municipality (16JC1405700 to W-QG), High Peak IV subject on stem cells and translational medicine from Education Commission of Shanghai Municipality, and KC Wong foundation (to W-QG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Xiang Fang or Wei-Qiang Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, PJ., Wang, X., An, N. et al. Loss of Par3 promotes prostatic tumorigenesis by enhancing cell growth and changing cell division modes. Oncogene 38, 2192–2205 (2019). https://doi.org/10.1038/s41388-018-0580-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0580-x

This article is cited by

Search

Quick links